
1

2

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

3

 Relative latency to memory continues to increase
 Vector processors amortize memory latency
 Cache-based microprocessors reduce memory latency
 Multithreaded processors tolerate memory latency

 Multithreading is most effective when:
 Parallelism is abundant
 Data locality is scarce

 Large graph problems perform well on this architecture
 Semantic databases
 Big data

4

 Many threads per processor core;
small thread state

 Thread-level context switch at
every instruction cycle

Slide 4

registers

program
counter

ALU

conventional

processor
multithreaded processor

“stream”

5

• Conventional processor • Multithreaded processor

Slide

5

When one or a few

threads stall,

memory/network

bandwidth become idle

Although some threads

stall, others keep issuing

local/remote memory

requests, keeping most

precious resources busy

network

memory
memory

network

6
6

 Memory or network latency delaying one thread will not delay
processor core with more work to do

 Keeps processors busier but that’s less important than the fact
that it keeps precious resources – memory and network
bandwidth – busier

 Works very well with global shared memory because of its
latency tolerance

 Needs fine-grain, cheap synchronization
 Programmer can design algorithms in terms of global shared

memory and abundant parallelism, almost like PRAM model

7

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

8

 Heavily multi-threaded processor: 128 hardware threads
multiplexed between OS and all applications
 16 protection domains (address maps) per processor
 Multi-threaded architecture tolerates memory latency
 Data locality not critical for performance

 Scrambled and distributed shared memory to avoid contention

 Lightweight synchronization using full/empty bits on all memory

 Interconnect bisection bandwidth scales with the number of

processors

 No hardware interrupts
 Hardware threads allocated by user via instruction, not OS

8

9

MTK Linux

Compute Service & IO

Service Partition

• Linux OS

• Specialized Linux nodes

Login PEs

IO Server PEs

Network Server PEs

FS Metadata Server PEs

System Server PEs

Compute Partition

 MTK (BSD)

RAID Controllers

Network

PCI-E

10 GigE

Fibre Channel

PCI-E

1

0

 Uses the same cabinets, boards, scalable interconnect, I/O and storage infrastructure,
user environment, and administrative tools…

 …just changes the processor

 Cabinet
 24 blades per cabinet
 Vertical airflow with optional liquid assist

 Compute blades
 4 Threadstorm processors
 16-64 GB per processor

 Cray XT service and I/O subsystem
 PCIe connections to storage and networks
 Scalable Lustre global file system

 Cray XT high-speed 3D torus network
 Cray XT power and RAS systems
 Linux based user environment

1

1

1

2

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

1

3

 To the programmer, a multiple processor XMT looks like a
single processor, except that the number of threads is
increased.

13

Bokhari/Sauer 2003

1

4

 Automatic Parallelizing C / C++ Compiler
 Compiler runs on Linux login node
 The executable runs on the compute nodes
 Provides automatic parallelism if proper options are included
 Parallelization directives are used to provide “hints” to the compiler

 Login Nodes run standard SuSe (SLES 11) Linux
 All usual Linux languages and applications may be used
 A “hybrid” programming model is possible, and encouraged

 Lightweight user communication (LUC) interface
 Use LUC to build a client/server interface between the front-end and back-end
 Symmetric; RPC-style interface in either direction

 Lustre global file system
 High-performance parallel file system used across Cray line

Slide

14

1

5

 C/C++ optimizing compiler
 Aggressive automatic parallelization capability
 Support for various hierarchies of parallelization

 reductions, linear recurrences
 Support for atomic memory operations
 Interprocedural optimization

 includes capability to inline library functions

 Incremental recompilation and incremental linking

 Tightly integrated with debugging and performance analysis tools

Slide 15

1

6

• The XMT programmer needs to think about algorithms and
the compiler.

• Running XMT programs is, practically speaking, dependent
on the XMT C/C++ compiler.

• Programming the XMT for performance is a “negotiation”
with the compiler.

1

7

• The compiler automatically parallelizes loops when it can.
• The programmer influences the compiler’s loop

parallelization actions with pragmas.

 #pragma mta assert nodep *A

 #pragma mta assert parallel

 #pragma mta loop future

 #pragma mta interleave schedule

 etc.

1

8

 Processor throughput? Never observed to be the bottleneck.
 Typical processor utilization ~ 30%

 Network bandwidth

 Especially at larger scale
 Tunable HW settings in the network, based on the amount of

concurrency needed to saturate the bisection BW, in place to
avoid over-saturation of the network

 128P sized systems and smaller limited to 180 outstanding
memory operations per processor

 For 512P system, this drops to 144 outstanding operations

 Memory bandwidth
 Minimizing trips to memory is important

1

9

 Sequential code murders performance.
 21 cycles per instruction issue

 XMT memory references are hashed

 Granularity of 8-word cache lines

 All jobs use all memories in the system
 Example: “betweenness centrality” graph computation on 16

processors of a 128-processor system: 25% faster than on 16
processors of a 16-processor system

 Exclusive protection domains, but no exclusive ownership of

physical hardware resources

2

0

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

2

1

 Apprentice2
• GUI application for debugging performance problems
• Consists of one or more reports based on how your program was

compiled and executed
• Canal Report

• Feedback from the compiler
• Insight on how latent parallelism was exploited
• Information on expected resource utilization and scheduling

• Tview Report
• Hardware counter plots
• Actual performance of your application
• Runtime trap information for detecting hotspots

• Bprof Report
• Profile tables in terms of instructions issued and memory

references

21

2

2

 The Canal tool provides feedback from the compiler on whether/how it

parallelized loops.
 One section of the Canal output is associated with source code:

 | #pragma mta assert parallel
 | #pragma mta use 100 streams
 | for(int th=0; th<MTA_NUM_STREAMS(); th++) {
 2 p | unsigned outhead = 0, outtail = 0;
 | for(;;) {
 | // grab INBLOCK nodes (& stubs) from the input
 3 DX | unsigned inhead = int_fetch_add(&newhead, INBLOCK);
 | // avoid overrun
 3 pX | unsigned intail = min(inhead + INBLOCK, oldtail);
++ function min inlined
 |

2

3

23

2

4

24

2

5

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

2

6

• The Multithreaded programming model has superior
performance on problems that involve…
• High degree of data parallelism
• Large fraction of remote references

• The Cray XMT2 is based on proven supercomputer
hardware with a custom multithreaded processor

• Thinking in parallel and working closely with the compiler
lead to best performance

• A wide array of tools are available for performance
optimization

2

7

2

8

2

9 29

