YarcData

A DIVISION OF CRAY INC.

URIKA
The Cray XMT
Multithreaded

Programming
Model

YarcData

Agenda

Why Multithreading?

| -

The XMT Architecture

/

Programming the XMT

/

XMT Performance Tools

/

Summary

YarcData

Why Multithreading?

e Relative latency to memory continues to increase
e Vector processors amortize memory latency
e Cache-based microprocessors reduce memory latency
e Multithreaded processors tolerate memory latency

e Multithreading is most effective when:
e Parallelism is abundant
e Data locality is scarce

e Large graph problems perform well on this architecture
e Semantic databases
e Bigdata

YarcData

Multithreading Made Simple

e Many threads per processor core;
small thread state

e Thread-level context switch at
every instruction cycle

registers % E ®
= 9]]] ¢ o]
: ALU % B //
—1

I Gounter § % 0
;?Q;/::;i;nal multithreaded processor

YarcData

Keeping the Bottlenecks Saturated

- Conventional processor - Multithreaded processor

QUi

(000

Although some threads
stall, others keep issuing
local/remote memory
requests, keeping most
precious resources busy

network network

YarcData

The Advantage of Multithreading

e Memory or network latency delaying one thread will not delay
processor core with more work to do

e Keeps processors busier but that’s less important than the fact
that it keeps precious resources — memory and network
bandwidth — busier

e Works very well with global shared memory because of its
latency tolerance

e Needs fine-grain, cheap synchronization

e Programmer can design algorithms in terms of global shared
memory and abundant parallelism, almost like PRAM model

YarcData

Agenda

Why Multithreading?

| -

The XMT Architecture

/

Programming the XMT

/

XMT Performance Tools

/

Summary

YarcData

Cray XMT Architecture

e Heavily multi-threaded processor: 128 hardware threads
multiplexed between OS and all applications

e 16 protection domains (address maps) per processor
e Multi-threaded architecture tolerates memory latency
e Data locality not critical for performance

e Scrambled and distributed shared memory to avoid contention
* Lightweight synchronization using full/empty bits on all memory

e Interconnect bisection bandwidth scales with the number of
processors

* No hardware interrupts
e Hardware threads allocated by user via instruction, not OS

YarcData

XMT System Logical View

Compute Service & 10
MTK Linux

YarcData

Cray XMT2 is Built on the XT5 Infrasiructure

e Uses the same cabinets, boards, scalable interconnect, I/O and storage infrastructure,
user environment, and administrative tools...

...just changes the processor

e Cabinet
» 24 blades per cabinet
* \Vertical airflow with optional liquid assist
e Compute blades
* 4 Threadstorm processors
e 16-64 GB per processor
e Cray XT service and I/O subsystem
* PCle connections to storage and networks
» Scalable Lustre global file system
e Cray XT high-speed 3D torus network
e Cray XT power and RAS systems
e Linux based user environment

XMT2 Compute Blade

Agenda

Why Multithreading?

| -

The XMT Architecture

/

Programming the XMT

/

XMT Performance Tools

/

Summary

YarcData

XMT Programming Model

e To the programmer, a multiple processor XMT looks like a
single processor, except that the number of threads is
increased.

128 virtual processors

Shared Interconnection 128 virtual processors

Memory Network EE o

128 virtual processors

YarcData

URIKA Programming Environment

e Automatic Parallelizing C / C++ Compiler

Compiler runs on Linux login node

The executable runs on the compute nodes

Provides automatic parallelism if proper options are included
Parallelization directives are used to provide “hints” to the compiler

e Login Nodes run standard SuSe (SLES 11) Linux

e Allusual Linux languages and applications may be used
e A “hybrid” programming model is possible, and encouraged

e Lightweight user communication (LUC) interface

e Use LUC to build a client/server interface between the front-end and back-end
e Symmetric; RPC-style interface in either direction

e Lustre global file system

e High-performance parallel file system used across Cray line

YarcData

XMT Compiler

e C/C++ optimizing compiler
e Aggressive automatic parallelization capability
e Support for various hierarchies of parallelization

e reductions, linear recurrences
e Support for atomic memory operations
* Interprocedural optimization

e includes capability to inline library functions

e Incremental recompilation and incremental linking

e Tightly integrated with debugging and performance analysis tools

YarcData

Using the XMT's C/C++ Compiler

- The XMT programmer needs to think about algorithms and
the compiler.

Running XMT programs is, practically speaking, dependent
on the XMT C/C++ compiler.

Programming the XMT for performance is a “negotiation”
with the compiler.

YarcData

Inputs to the Compiler: Pragmas

- The compiler automatically parallelizes loops when it can.

- The programmer influences the compiler’s loop
parallelization actions with pragmas.

e ipragma mta assert nodep *A

e pragma mta assert parallel

e #pragma mta loop future

e #pragma mta interleave schedule
e etc.

YarcData

Potential Architectural Bottlenecks

* Processor throughput? Never observed to be the bottleneck.
e Typical processor utilization ~ 30%

e Network bandwidth
e Especially at larger scale

e Tunable HW settings in the network, based on the amount of
concurrency needed to saturate the bisection BW, in place to
avoid over-saturation of the network

e 128P sized systems and smaller limited to 180 outstanding
memory operations per processor

* For 512P system, this drops to 144 outstanding operations

e Memory bandwidth
e Minimizing trips to memory is important

YarcData

Additional Performance Considerations

e Sequential code murders performance.
e 21 cycles per instruction issue

e XMT memory references are hashed
e Granularity of 8-word cache lines

* All jobs use all memories in the system

e Example: “betweenness centrality” graph computation on 16
processors of a 128-processor system: 25% faster than on 16
processors of a 16-processor system

e Exclusive protection domains, but no exclusive ownership of
physical hardware resources

YarcData

Agenda

Why Multithreading?

| -

The XMT Architecture

/

Programming the XMT

/

XMT Performance Tools

/

Summary

YarcData

Performance tools overview

= Apprentice2
« GUI application for debugging performance problems

« Consists of one or more reports based on how your program was
compiled and executed
 Canal Report

- Feedback from the compiler
* Insight on how latent parallelism was exploited

- Information on expected resource utilization and scheduling
- Tview Report

- Hardware counter plots
« Actual performance of your application

- Runtime trap information for detecting hotspots
- Bprof Report
- Profile tables in terms of instructions issued and memory
references

YarcData

Canal - compiler analysis

* The Canal tool provides feedback from the compiler on whether/how it
parallelized loops.
e One section of the Canal output is associated with source code:

| #pragma mta assert parallel

#pragma mta use 100 streams
for (int th=0; th<MTA NUM STREAMS (),; th++) {

2 p unsigned outhead = 0, outtail = 0;
// grab INBLOCK nodes (& stubs) from the input
3 DX unsigned inhead = int fetch add(&newhead, INBLOCK) ;

|
|
|
: for(;;) |
|
|

// avoid overrun
3 pX | unsigned intail = min(inhead + INBLOCK, oldtail);
++ function min inlined

YarcData

& DMSION OF CRay INC.

Traceview - performance monitor

= pevirlap2 - 8 X
Eile Help
wTview X | wcanal ¥]
Traced 538 events, dropped 0in 36.24 seconds on 16 CPUs running at S00MHz, traps: 2182 data_blocked, 1 float_extension
16.0 512.0
CpuUtil
14.4 CpuAvail 460.8
MemConcur [l
12.8 409.6
11.2 358.4 ‘
w 9.6 307.2
i; o
g g
@ 8.0 256.0 &
g =
g o
B 6.4 204.8 ©
4.8 153.6
3.2 102.4
1.6 51.2
0.0 J 0.0
0.0 3.6 10.9 14.5 18.1 21.7 25.4 29.0 32.6 36.2
Time (Seconds)
Events
Time Kind Proc. Name Streams 25% Done 50% Done 75% Done 100% Done
5.290758 PAR_REGION_ENTRY 9 radix_sort fork 1 30 |
5290773 PAR_REGION_ENTRY 15 radix_sort fork 1 30]
5294595 PAR_REGION_EXIT 5 radix_sortjoin 1 5.294491 5.294492 5.294494 5.294495
5294602 PAR_REGION_EXIT 2 radix_sortjoin 1 5294490 5294492 5294493 5.294495
5294603 PAR_REGION_EXIT 1 radix_sort join 1 5294488 5294491 5294492 5.294495
5.294606 PAR_REGION_EXIT 3 radix_sortjoin 1 5294489 5294491 5.294493 5.294507
5.294611 PAR_REGION_EXIT 7 radix_sortjoin 1 5294497 5294500 5.294501 5.294503
S 204A1A PAR RFGINN FXIT N radiv cnrtinin 1 £ 2044aR 5 2045M
D Filter

& DMSION OF CRay INC.

Bprof — performance profiling

Help

wTview ¥ | wCanal X wBprof X
Profiled 43.79% of execution (122.11M of approximately 278.84M issues), overheads: profiling 2.90%, parallel 7.36%, spill 0.00%, other 0.00%
Function % Issues Total Issi§Js Issues Calls| Issues/Call | Total Issues/Call ||~
main 343 122105933 4193260 1 4193260.00 122105933.00
radix_sort 9647 117911611 117790975 1 117790975.00 117911611.00
atoi 0.00 521 521 g 521.00 521.00
mta_clock_freq 0.00 60 60 4 15.00 15.00
mta_get_num_teams 0.00 1 1 1 1.00 1.00
malloc 0.00 0 0 4 0.00 0.00
strtol 0.00 0 0 1 0.00 0.00
perror 0.00 0 0 0 0.00 0.00 ¥
Callers
Function % Issues Issues Calls
main 100.00 117911611 1
I
|
|
Callees
Function % Issues Issues Calls
" __mta_trace 0.00 0 33
malloc 0.00 0 3
mta_get_num_teams 0.00 1 1
RT_Task:num_teams() 0.00 0 1
__crev_profile_barrier 0.00 0 1152
__free_vector 0.00 0 1
free 0.00 0 3
| perror 0.00 0 0
I

YarcData

& DMSION OF CRay INC.

Agenda

Why Multithreading?

T

The XMT Architecture

/

Programming the XMT

/

XMT Performance Tools

/

Summary

YarcData

Summary

- The Multithreaded programming model has superior
performance on problems that involve...

- High degree of data parallelism
- Large fraction of remote references

- The Cray XMT2 is based on proven supercomputer
hardware with a custom multithreaded processor

- Thinking in parallel and working closely with the compiler
lead to best performance

- A wide array of tools are available for performance
optimization

YarcData

Thank you!

James D. Maltby, Ph.D
jmaltby@yarcdata.com

YarcData

Backup Slides

YarcData

XMT's “Threadstorm” CPU Architecture

YarcData

