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lliamson, Vortex Dynamics In The Cylinder Wake, Annu. Rev. Fluid. Mech., 1996
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Shock-bubble interaction
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Jacobs,Shock-induced mixing of a light-gas cylinder, J. Fluid Mech., 1992
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Flows and Scales

e Bluff body flows (incompressible)
@ Shock bubble interaction (compressible)
e Emergence of multiple scales:

e From wall boundaries

e From interface between fluids
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The need for adaptivity

® Small (space/time) scales could be localizable
® Advection dominated process
® Complex, unsteady geometries
® Mult-physics phenomena (including growth)
® [ast, high-res simulations
® (Concentrate computation on small scales

e Efficient execution on multi/many-core
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Wavelets

@ Explicit control of the overall error
e High compression rates

® Multiresolution analysis
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Wavelets

@ Explicit control of the overall error
e High compression rates

® Multiresolution analysis

FWT and Inverse

l l—|—1
k Z h2k ™m Cm
l l-l-l
k’ Z ng‘ m 9

l
+1 Z h2m kc +Z ng kdl

r —

1. Cohen and Daubechies, and Feauveau, Biorthogonal Bases of Compactly Supported Wavelets, Communication on Pure and Applied

Mathematics, 1992
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How to capture new scales?
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Wavelet blocks

e Neighbors look-up: less memory indirections
® Less #ghosts
e Efficient ghost reconstructions

e Within a block: random access

Root
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GPU acceleration

Split the computing stage:
1. Task parallel, load-unbalanced ghost computing (multi-core)
2. Fine-grained data parallelism for RHS (GPUs)

3. Integration step (multi-core)

qnew gk qold o JtF (qold’ vqold)

—_—
GPUs

How much faster than CPU-only execution?
How much different are CPU/GPU and CPU-only solutions?
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Execution model

/ GPU 1
T GPU 2

\ GPU 3

“ Accelerators”

Output Tokens
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GPU kernels
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Re 9500

Accuracy
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Re 9500
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Results: complex geometries
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Results: 5d simulations, Re 1000




Results: 5d simulations, Re 1000
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SIMDization of tree codes

: GFLOP/s vs N
Computation on brutus cluster:

* One AMD 4P Quad-core node 8
* Opteron 8380 core @ 2.5 GHz ]
= Peak performance: 320 GFLOP/s § ;

5 €
* Tree code: 180 GFLOP/s (clean FLOPs) g 3

X
=» Hardware utilization: 55% @ 3 i

& 1
1e+2 1e+3 1e+4 1e+5 1e+6
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template<>
void DirectInteractions::kernel<false>(const _ m128 xd, const _ ml28 vyd,
const __ml28 xs, const _ ml28 ys, const __ml28 ws,

: ; I ‘_\ /I D float * const u_dest, float * const v_dest)
' {
. const __ml128 rxl = xd - _select<@>(xs);

const __m128 ryl = yd - _select<@>(ys);
const _ ml128 r2A = rx1*rx1 + rylxryl;

xd - _select<l>(xs);
yd - _select<1>(ys);
rx2%rx2 + ry2xry2;

const _ ml28 rx2
const _ ml28 ry2
const _ ml128 r2B

Computatlon on| xd - _select<2>(xs);

yd - _select<2>(ys);
rx3%rx3 + ry3x*ry3;

const _ ml128 rx3
const __ml128 ry3
const _ ml128 r2C

* One AMD 4P Q)

xd - _select<3>(xs);
yd - _select<3>(ys);
rxdkxrx4 + rydxryd;

const _ ml28 rx4
const __ml28 ry4
const _ ml128 r2D

* Opteron 8380 c«

#ifdef _FMM_NOPRECDIV_KERNELS

const _ ml128 factorl
= Peak perform: const __m128 factor2

const _ ml128 factor3
const _ ml128 factor4d

worse_division(_select<@>(ws), r2A);
worse_division(_select<l>(ws), r2B);
worse_division(_select<2>(ws), r2C);
worse_division(_select<3>(ws), r2D);

* Tree code: 180 ( #else

_mm_div_ps(_select<@>(ws), r2A);
_mm_div_ps(_select<l>(ws), r2B);
_mm_div_ps(_select<2>(ws), r2C);
_mm_div_ps(_select<3>(ws), r2D);

const _ ml128 factorl
const _ _m128 factor2

) Hardware uti] const _ ml128 factor3
const _ ml128 factor4

#endif
_mm_store_ps(u_dest, _mm_sub_ps(_mm_load_ps(u_dest), factorlxryl));
_mm_store_ps(u_dest, _mm_sub_ps(_mm_load_ps(u_dest), factor2xry2));
_mm_store_ps(u_dest, _mm_sub_ps(_mm_load_ps(u_dest), factor3xry3));
_mm_store_ps(u_dest, _mm_sub_ps(_mm_load_ps(u_dest), factordxry4));
_mm_store_ps(v_dest, _mm_add_ps(_mm_load_ps(v_dest), factorlxrxl));
_mm_store_ps(v_dest, _mm_add_ps(_mm_load_ps(v_dest), factor2xrx2));
_mm_store_ps(v_dest, _mm_add_ps(_mm_load_ps(v_dest), factor3*rx3));
_mm_store_ps(v_dest, _mm_add_ps(_mm_load_ps(v_dest), factordxrx4));

}
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Is Chombo faster?
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Is Chombo faster?

Chombo
® Alternatives: CLAWPACK, AMRITA

® Single-phase

® 2nd_order spatial discretization

Present

1. CHOMBO: Colella et al., software package for AMR applications, Technical Report(LBNL), 2000
2. CLAWPACK: LeVeque, software, http:/ / www.amath.washington.edu/~claw/, 1997
3. AMRITA: Quirk, An Introduction to Amrita. http:/ /www.amrita-cfd.com, 1997
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Is Chombo faster?

Chombo
® Alternatives: CLAWPACK, AMRITA

® Single-phase

® 2nd_order spatial discretization

Present solver
® Multi-phase

® 5th_order spatial discretization

Chombo

Present: 56 min, 244 MB (+ 1 GPU: 7 min)
Chombo: 91 min, 230 MB

1. CHOMBO: Colella et al., software package for AMR applications, Technical Report(LBNL), 2000
2. CLAWPACK: LeVeque, software, http:/ / www.amath.washington.edu/~claw/, 1997
3. AMRITA: Quirk, An Introduction to Amrita. http:/ /www.amrita-cfd.com, 1997
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Performance

Strong scaling versus #GPUs, #CPU cores

0 GPUs
1 GPU

2 GPUs
3 GPUs
4 GIPUs
5 GPUs
6 GPUs

12 cores
10 cores
8 cores

b6 cores
4 cores

2 cores
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Compared to a space adaptive, single-threaded solver:
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® Algorithmic improvements: 24X faster
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Performance

Compared to a space adaptive, single-threaded solver:

® Algorithmic improvements: 24X faster
® CPU optimization (vectorization): 1.8X faster
® Task-based parallelism (threading): 12X (over 16)

® (GPPUs as accelerators: 3X

p Overall speed-up: 3 orders of magnitude (x1500)
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Conclusions

* GPUs are offering a performance gain of (no more than) 10X:

V' 3-7 X (maximum) in terms of GFLOP/s

v 2-7 X (maximum) in terms of GByte/s

X Even if high, performance gains are fragile
* Slow CPU-GPU transfers:

V" Can be hidden with computation

X Cannot always be addressed by moving everything on the GPU
* GPU execution models impose rigid requirements

X Irregular codes do not directly map well on GPU

V' Relaxation/regularization dramatically improves performance

V" Use heterogenous computing instead
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