
CSCS Proposal writing webinar
Technical review

12th April 2015
CSCS

 Tips for new applicants

– CSCS overview

– Allocation process
 Guidelines

– Basic concepts

– Performance tools
 Demo

 Q&A open discussion

2

Agenda

Tips for new applicants

4

CSCS: Overview (Nov. 2014)

http://www.top500.orghttp://www.top500.org

http://www.green500.orghttp://www.green500.org

http://www.top500.org/
http://www.top500.org/

5

CSCS: Usage statistics (2013)

Usage by
Research Field

Usage by
Institution

http://www.cscs.ch/publications/annual_reports/http://www.cscs.ch/publications/annual_reports/

6

CSCS: Piz Daint

CSCS petascale system:

● Hybrid Cray XC30, 5272 compute nodes, connected with Aries interconnect

● Each compute node hosts 1 Intel SandyBridge CPU and 1 NVIDIA K20X GPU

● For a total of 42176 cores and 5272 GPUs, 7.8 Pflops peak performance

http://user.cscs.ch/computing_resources/piz_daint_and_piz_daint_extension/http://user.cscs.ch/computing_resources/piz_daint_and_piz_daint_extension/

7

Submitting a project at CSCS

http://www.cscs.ch/user_lab/http://www.cscs.ch/user_lab/

Guidelines: benchmarking and scaling

10

Proposal format

11

● There are many ways to measure the execution time:
➔ The most simple one is to time the aprun command and to report the real time:

● It is the appplicant responsibility to show the scalability of his application:

➔ A code scales if its execution time decreases when using increasing numbers of
parallel processing elements (cores, processes, threads, etc…)

➔ The idea is to find the scalability limit of your application – the point at which the
execution time stops decreasing.

Benchmarking and Scalability

12

Batch system:
● The job submission system used at CSCS is SLURM.

Submit your jobscript:
● cd $SCRATCH/
● cp /project/*/$USER/myinput .
● sbatch myjob.slurm
● squeue -u $USER
● scancel myjobid # if needed

Adapt the jobscript to your needs:
● aprun [options] myexecutable

● -n : Total number of MPI tasks
● -N : Number of MPI tasks

 per compute node (<= 8)
● -d : Number of OpenMP threads

Typical user workflow: launching parallel jobs

http://user.cscs.ch/get_started/run_batch_jobshttp://user.cscs.ch/get_started/run_batch_jobs

13

● To run 50 steps, my code
takes:
➔ 1h/6~10m on 16 nodes,
➔ 1h/40~2m on 128 nodes,
➔ 1h/200<1m on 1024 nodes.

For my production job, I must
run 2400 steps (x48).

How many compute node hours
(CNH) should I ask ?

Cost study

● User type #1:
➔ (1024nodes*1h/200)*48
➔ Realtime = 246 CNH
➔ Human time < 15 minutes

● User type #2:
➔ (16nodes*1h/6)*48
➔ Realtime = 128 CNH
➔ Human time = 8hours (>>15 min!)

✔ BUT I used only half CNH
✔ I can submit another 2400steps job!

● User type #3:
➔ (128nodes*1h/40)*48
➔ Realtime = 154 CNH
➔ Human time = 1 hour 12 min

✔ Faster than 8h !
✔ I can submit another 2400steps job!

14

● To run 50 steps, my code
takes:
➔ 1h/6~10m on 16 nodes,
➔ 1h/40~2m on 128 nodes,
➔ 1h/200<1m on 1024 nodes.

For my production job, I must
run 2400 steps (x48).

How many compute node hours
(CNH) should I ask ?

Cost study

● User type #1:
➔ (1024nodes*1h/200)*48
➔ Realtime = 246 CNH
➔ Human time < 15 minutes

● User type #2:
➔ (16nodes*1h/6)*48
➔ Realtime = 128 CNH
➔ Human time = 8hours (>>15 min!)

✔ BUT I used only half CNH
✔ I can submit another 2400steps job!

● User type #3:
➔ (128nodes*1h/40)*48
➔ Realtime = 154 CNH
➔ Human time = 1 hour 12 min

✔ Faster than 8h !
✔ I can submit another 2400steps job!

● User type #0:
➔ (2048nodes*1h/100)*48
➔ Realtime = 980 CNH !
➔ Human time = 30 minutes !

15

Benchmarking: Mpi+OpenMP code on PizDaint (small problem size)

NASA BT
C=480x320x28

16

● It can sometimes be difficult to read a scaling curve

➔ It is standard to compare the execution time with a reference time

➔ Speedup is defined by the following formula:
➔ where T

0
is the reference time, and

➔ T
n
is the execution on n compute nodes

➔ Linear speedup or ideal speedup is obtained when Speedup
n
=n.

➔ When running a code with linear speedup, doubling the number of processors
doubles the speed. As this is ideal, it is considered very good scalability.

➔ Efficiency is a performance metric defined as

➔ Codes with an efficiency > 0.5 are considered scalable.

Speedup and Efficiency

Speedupn=
t 0
t n

Efficiencyn=
Sn
n

17

Scalability quiz: Mpi+OpenMP code on PizDaint (small problem size)

C=480x320x28

18

Scalability quiz: Mpi+OpenMP code on PizDaint (small problem size)

C=480x320x28

19

Scalability quiz: Mpi+OpenMP code on PizDaint (small problem size)

C=480x320x28

20

Scalability quiz: Mpi+OpenMP code on PizDaint (small problem size)

C=480x320x28

➔ Use MPI&OpenMP

21

Scalability quiz: Mpi+OpenMP code on PizDaint (small problem size)

C=480x320x28

➔ Use MPI&OpenMP
➔ Scales up to 8 CN

22

Scalability quiz: Mpi+OpenMP code on PizDaint (medium problem size)

D=1632x1216x34

23

Scalability quiz: Mpi+OpenMP code on PizDaint (medium problem size)

D=1632x1216x34

24

Scalability quiz: Mpi+OpenMP code on PizDaint (medium problem size)

D=1632x1216x34

25

Scalability quiz: Mpi+OpenMP code on PizDaint (medium problem size)

D=1632x1216x34

➔ Use MPI&OpenMP

26

Scalability quiz: Mpi+OpenMP code on PizDaint (medium problem size)

D=1632x1216x34

➔ Use MPI&OpenMP
➔ Scales up to 64 CN

32

How much can you ask ?

● Allocation units are in node hours:
➔ Compare different job sizes (using the time command),
➔ Report in your proposal the execution timings (without tools) for each job size,
➔ Multiply the optimal job size (nodes) by the execution time (hours) to find the amount to request

(compute node hours).

● Projects will always be charged full node hours:
➔ even though not all the CPU cores are used,
➔ even though the GPU is not used.

● Performance data must come from jobs run on Piz Daint:
➔ For a problem similar to that proposed in the project description

use a problem state that best matches your intended production runs,
scaling should be measured based on the overall performance of the application,
compare results from same machine, same computational model,
no simplified models or preferential configurations.

● There are many ways for presenting mediocre performance results in the best possible
light:
➔ We know them,
➔ Contact us if you need help: help@cscs.ch

Guidelines: performance report

35

0. Connect to CSCS:
● ssh -X myusername@ela.cscs.ch
● ssh daint

1. Setup your Programming Environment:
● module swap PrgEnv-cray PrgEnv-gnu

● module list
● module avail
● module avail cray-netcdf
● module show cray-netcdf
● module load cray-netcdf/4.3.2
● module rm cray-netcdf/4.3.2

2. Compile your code:
● make clean
● make bt-mz MAIN=bt CLASS=C NPROCS=64

3. Submit your job:
● cd bin
● sbatch myjob.slurm

Typical user workflow: compilation

http://user.cscs.ch/compiling_optimizing/compiling_your_codehttp://user.cscs.ch/compiling_optimizing/compiling_your_code

CRAY specifics:
You must use the CRAY wrappers to compile

● ftn (Fortran),
● cc (C)
● CC (C++)

The wrappers will detect the modules
you have loaded and will automatically use
the compiler and libraries that you need.

4 compilers available:
● CCE
● GNU
● INTEL
● PGI

36

1. Setup your Programming Environment:
● module swap PrgEnv-cray PrgEnv-gnu
● module use /project/csstaff/proposals
● module load perflite/622

or
● module load craype-accel-nvidia35
● module load perflite/622cuda

or
● module load craype-accel-nvidia35
● module load perflite/622openacc

2. Recompile your code with the tool:
● cd $SCRATCH/proposals.git/vihps/NPB3.3-MZ-MPI
● make clean
● make bt-mz MAIN=bt CLASS=C NPROCS=64

3. Submit your job:
● cd bin
● sbatch myjob.slurm

4. Read and attach the full report to your proposal:
● cat *.rpt

Typical user workflow: compilation with perftool
perflite is Cray's performance tool,
it provides performance statistics automatically,
and supports all compilers (cce, intel, gnu, pgi).

No need to modify the src code,
just recompile

No need to modify the jobscript,
Just rerun

Performance report at the end of the job

http://user.cscs.ch/compiling_optimizing/performance_reporthttp://user.cscs.ch/compiling_optimizing/performance_report

For MPI/OpenMP codes

For MPI/OpenMP + OpenACC codes

For MPI/OpenMP + Cuda codes

37

Performance: Mpi+OpenMP code on PizDaint (BT CLASS=C, 50 steps)

16CN: aprun -n64 -N4 -d2 ./bt-mz_C.64+pat622

The code stops
scaling above 8 nodes.
Why ?

 8CN: aprun -n32 -N4 -d2 ./bt-mz_C.32+pat622 32CN: aprun -n64 -N2 -d4 ./bt-mz_C.64+pat622

What can we learn
from the
performance
reports ?

Setup your Programming Environment:
● module swap PrgEnv-cray PrgEnv-gnu
● module use /project/csstaff/proposals
● module load perflite/622

Recompile your code with the tool:
● cd $SCRATCH/proposals.git/vihps/NPB3.3-MZ-MPI
● make clean
● make bt-mz MAIN=bt CLASS=C NPROCS=64

Submit your job:
● cd bin
● sbatch myjob.slurm
● cat *.rpt

38

Performance: Mpi+OpenMP code on PizDaint (BT CLASS=C, 50 steps)

16CN: aprun -n64 -N4 -d2 ./bt-mz_C.64+pat622

The code stops
scaling above 8 nodes.
Why ?

 8CN: aprun -n32 -N4 -d2 ./bt-mz_C.32+pat622 32CN: aprun -n64 -N2 -d4 ./bt-mz_C.64+pat622

What can we learn
from the
performance
reports ?

Setup your Programming Environment:
● module swap PrgEnv-cray PrgEnv-gnu
● module use /project/csstaff/proposals
● module load perflite/622

Recompile your code with the tool:
● cd $SCRATCH/proposals.git/vihps/NPB3.3-MZ-MPI
● make clean
● make bt-mz MAIN=bt CLASS=C NPROCS=64

Submit your job:
● cd bin
● sbatch myjob.slurm
● cat *.rpt

39

Performance: Mpi+OpenMP code on PizDaint (BT CLASS=C, 50 steps)

16CN: aprun -n64 -N4 -d2 ./bt-mz_C.64+pat622

The code stops
scaling above 8 nodes.
Why ?

 8CN: aprun -n32 -N4 -d2 ./bt-mz_C.32+pat622 32CN: aprun -n64 -N2 -d4 ./bt-mz_C.64+pat622

What can we learn
from the
performance
reports ?

Setup your Programming Environment:
● module swap PrgEnv-cray PrgEnv-gnu
● module use /project/csstaff/proposals
● module load perflite/622

Recompile your code with the tool:
● cd $SCRATCH/proposals.git/vihps/NPB3.3-MZ-MPI
● make clean
● make bt-mz MAIN=bt CLASS=C NPROCS=64

Submit your job:
● cd bin
● sbatch myjob.slurm
● cat *.rpt

Demo: MPI+OpenMP / 32CN

GPU codes

42

Scalability: Mpi+OpenMP+CUDA code on PizDaint

mailto:myusername@ela.cscs.ch

43

Scalability: Mpi+OpenMP+CUDA code on PizDaint

44

Scalability: Mpi+OpenMP+CUDA code on PizDaint

45

Scalability: Mpi+OpenMP+CUDA code on PizDaint

➔ Scales up to <256 CN

46

Scalability: Mpi+OpenMP+CUDA code on PizDaint

➔ Scales up to <256 CN
➔ What can we learn

from the tool ?

47

Performance: Mpi+OpenMP+CUDA code on PizDaint

128CN: aprun -n128 -N1 -d8 cp2k+pat622 512CN: aprun -n512 -N1 -d8 cp2k+pat622

48

Performance: Mpi+OpenMP+CUDA code on PizDaint

128CN: aprun -n128 -N1 -d8 cp2k+pat622 512CN: aprun -n512 -N1 -d8 cp2k+pat622

49

Performance: Mpi+OpenMP+CUDA code on PizDaint

128CN: aprun -n128 -N1 -d8 cp2k+pat622 512CN: aprun -n512 -N1 -d8 cp2k+pat622

50

Performance: Mpi+OpenMP+CUDA code on PizDaint

128CN: aprun -n128 -N1 -d8 cp2k+pat622 512CN: aprun -n512 -N1 -d8 cp2k+pat622

51

Performance: Mpi+OpenMP+CUDA code on PizDaint

128CN: aprun -n128 -N1 -d8 cp2k+pat622 512CN: aprun -n512 -N1 -d8 cp2k+pat622

● To allow multiple CPU cores
to simultaneously utilize a
single GPU, the CUDA
proxy must be enabled.

● Performance tools are only
supported with the CUDA
proxy disabled CRAY_CUDA_MPS=0

CRAY_CUDA_MPS=1

Conclusion

53

Recipe for a successfull technical review

If the answer to any of the following question is No…

 Does your code run on Piz Daint ?

 Did you provide scalability data from Piz Daint ?

 Did you attach the .rpt performance report file(s) ?

 Is your resource request consistent with your scientific goals ?

 Does the project plan fit the allocated time frame ?

… there is a risk that your proposal will not be accepted

55

Future events (2015)

Online registration ===> http://www.cscs.ch/eventsOnline registration ===> http://www.cscs.ch/events

Jan Feb OctSepAugJulJunMayAprMar NovDec

HPC Visualisation
using Python

Summer School
(Ticino)

Intro
Cuda/OpenACC

EuroHACKaton

Orientation course
(EPFL)

Orientation course
(ETHZ)

C++ for HPC

2
0
1
5

2
0
1
5

PASC'15
(ETHZ)

new
new new

new new

Thank you for your attention.

Questions ?

