
1

2

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

3

 Relative latency to memory continues to increase
 Vector processors amortize memory latency
 Cache-based microprocessors reduce memory latency
 Multithreaded processors tolerate memory latency

 Multithreading is most effective when:
 Parallelism is abundant
 Data locality is scarce

 Large graph problems perform well on this architecture
 Semantic databases
 Big data

4

 Many threads per processor core;
small thread state

 Thread-level context switch at
every instruction cycle

Slide 4

registers

program
counter

ALU

conventional

processor
multithreaded processor

“stream”

5

• Conventional processor • Multithreaded processor

Slide

5

When one or a few

threads stall,

memory/network

bandwidth become idle

Although some threads

stall, others keep issuing

local/remote memory

requests, keeping most

precious resources busy

network

memory
memory

network

6
6

 Memory or network latency delaying one thread will not delay
processor core with more work to do

 Keeps processors busier but that’s less important than the fact
that it keeps precious resources – memory and network
bandwidth – busier

 Works very well with global shared memory because of its
latency tolerance

 Needs fine-grain, cheap synchronization
 Programmer can design algorithms in terms of global shared

memory and abundant parallelism, almost like PRAM model

7

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

8

 Heavily multi-threaded processor: 128 hardware threads
multiplexed between OS and all applications
 16 protection domains (address maps) per processor
 Multi-threaded architecture tolerates memory latency
 Data locality not critical for performance

 Scrambled and distributed shared memory to avoid contention

 Lightweight synchronization using full/empty bits on all memory

 Interconnect bisection bandwidth scales with the number of

processors

 No hardware interrupts
 Hardware threads allocated by user via instruction, not OS

8

9

MTK Linux

Compute Service & IO

Service Partition

• Linux OS

• Specialized Linux nodes

Login PEs

IO Server PEs

Network Server PEs

FS Metadata Server PEs

System Server PEs

Compute Partition

 MTK (BSD)

RAID Controllers

Network

PCI-E

10 GigE

Fibre Channel

PCI-E

1

0

 Uses the same cabinets, boards, scalable interconnect, I/O and storage infrastructure,
user environment, and administrative tools…

 …just changes the processor

 Cabinet
 24 blades per cabinet
 Vertical airflow with optional liquid assist

 Compute blades
 4 Threadstorm processors
 16-64 GB per processor

 Cray XT service and I/O subsystem
 PCIe connections to storage and networks
 Scalable Lustre global file system

 Cray XT high-speed 3D torus network
 Cray XT power and RAS systems
 Linux based user environment

1

1

1

2

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

1

3

 To the programmer, a multiple processor XMT looks like a
single processor, except that the number of threads is
increased.

13

Bokhari/Sauer 2003

1

4

 Automatic Parallelizing C / C++ Compiler
 Compiler runs on Linux login node
 The executable runs on the compute nodes
 Provides automatic parallelism if proper options are included
 Parallelization directives are used to provide “hints” to the compiler

 Login Nodes run standard SuSe (SLES 11) Linux
 All usual Linux languages and applications may be used
 A “hybrid” programming model is possible, and encouraged

 Lightweight user communication (LUC) interface
 Use LUC to build a client/server interface between the front-end and back-end
 Symmetric; RPC-style interface in either direction

 Lustre global file system
 High-performance parallel file system used across Cray line

Slide

14

1

5

 C/C++ optimizing compiler
 Aggressive automatic parallelization capability
 Support for various hierarchies of parallelization

 reductions, linear recurrences
 Support for atomic memory operations
 Interprocedural optimization

 includes capability to inline library functions

 Incremental recompilation and incremental linking

 Tightly integrated with debugging and performance analysis tools

Slide 15

1

6

• The XMT programmer needs to think about algorithms and
the compiler.

• Running XMT programs is, practically speaking, dependent
on the XMT C/C++ compiler.

• Programming the XMT for performance is a “negotiation”
with the compiler.

1

7

• The compiler automatically parallelizes loops when it can.
• The programmer influences the compiler’s loop

parallelization actions with pragmas.

 #pragma mta assert nodep *A

 #pragma mta assert parallel

 #pragma mta loop future

 #pragma mta interleave schedule

 etc.

1

8

 Processor throughput? Never observed to be the bottleneck.
 Typical processor utilization ~ 30%

 Network bandwidth

 Especially at larger scale
 Tunable HW settings in the network, based on the amount of

concurrency needed to saturate the bisection BW, in place to
avoid over-saturation of the network

 128P sized systems and smaller limited to 180 outstanding
memory operations per processor

 For 512P system, this drops to 144 outstanding operations

 Memory bandwidth
 Minimizing trips to memory is important

1

9

 Sequential code murders performance.
 21 cycles per instruction issue

 XMT memory references are hashed

 Granularity of 8-word cache lines

 All jobs use all memories in the system
 Example: “betweenness centrality” graph computation on 16

processors of a 128-processor system: 25% faster than on 16
processors of a 16-processor system

 Exclusive protection domains, but no exclusive ownership of

physical hardware resources

2

0

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

2

1

 Apprentice2
• GUI application for debugging performance problems
• Consists of one or more reports based on how your program was

compiled and executed
• Canal Report

• Feedback from the compiler
• Insight on how latent parallelism was exploited
• Information on expected resource utilization and scheduling

• Tview Report
• Hardware counter plots
• Actual performance of your application
• Runtime trap information for detecting hotspots

• Bprof Report
• Profile tables in terms of instructions issued and memory

references

21

2

2

 The Canal tool provides feedback from the compiler on whether/how it

parallelized loops.
 One section of the Canal output is associated with source code:

 | #pragma mta assert parallel
 | #pragma mta use 100 streams
 | for(int th=0; th<MTA_NUM_STREAMS(); th++) {
 2 p | unsigned outhead = 0, outtail = 0;
 | for(;;) {
 | // grab INBLOCK nodes (& stubs) from the input
 3 DX | unsigned inhead = int_fetch_add(&newhead, INBLOCK);
 | // avoid overrun
 3 pX | unsigned intail = min(inhead + INBLOCK, oldtail);
++ function min inlined
 |

2

3

23

2

4

24

2

5

Summary

XMT Performance Tools

Programming the XMT

The XMT Architecture

Why Multithreading?

2

6

• The Multithreaded programming model has superior
performance on problems that involve…
• High degree of data parallelism
• Large fraction of remote references

• The Cray XMT2 is based on proven supercomputer
hardware with a custom multithreaded processor

• Thinking in parallel and working closely with the compiler
lead to best performance

• A wide array of tools are available for performance
optimization

2

7

2

8

2

9 29

