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Flows and Scales

Williamson, Vortex Dynamics In The Cylinder Wake, Annu. Rev. Fluid. Mech., 1996
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Jacobs,Shock-induced mixing of a light-gas cylinder, J. Fluid Mech., 1992 

Shock-bubble interaction
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Flows and Scales

• Bluff body flows (incompressible)
• Shock bubble interaction (compressible)
• Emergence of multiple scales:

• From wall boundaries
• From interface between fluids
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The need for adaptivity

• Small (space/time) scales could be localizable

• Advection dominated process

• Complex, unsteady geometries

• Multi-physics phenomena (including growth)

• Fast, high-res simulations

• Concentrate computation on small scales

• Efficient execution on multi/many-core
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Wavelets

Explicit control of the overall error

High compression rates

Multiresolution analysis
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Wavelets

Explicit control of the overall error

High compression rates

Multiresolution analysis
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FWT and Inverse

1. Cohen and Daubechies, and Feauveau, Biorthogonal Bases of Compactly Supported Wavelets, Communication on Pure and Applied 
Mathematics, 1992
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How to capture new scales?

reconstruct ghosts

evaluate RHS

update solution
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Wavelet blocks

• Neighbors look-up: less memory indirections
• Less #ghosts
• Efficient ghost reconstructions
• Within a block: random access
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GPU acceleration

Split the                         stage:

1. Task parallel, load-unbalanced ghost computing (multi-core)

2. Fine-grained data parallelism for RHS (GPUs)

3. Integration step (multi-core)

How much faster than CPU-only execution?
How much different are CPU/GPU and CPU-only solutions?

GPUs

qnew = qold + δtF
�
qold,∇qold

�

computing
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OpenCL Output Tokens

GPU 1

GPU 2

GPU 3

Wavelet-Blocks

Input Tokens

Multicore CPU

Output Tokens

Execution model

“Accelerators”
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GPU kernels
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cD, KL 1995 [73]
uniform-particles, size 4096x4096
wavelet-particles, eff. size 4096x4096
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Results: complex geometries
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Results: 3d simulations, Re 1000
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Results: 3d simulations, Re 1000
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SIMDization of tree codes

Computation on brutus cluster:

• One AMD 4P Quad-core node

• Opteron 8380 core @ 2.5 GHz

➡ Peak performance: 320 GFLOP/s

• Tree code: 180 GFLOP/s (clean FLOPs) 

➡ Hardware utilization: 55% 

SSE NBODY

C++ BH

16.5x

SSE BH
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Chombo

Present

Is Chombo faster?

Tuesday, November 1, 2011



Chombo

Present

Is Chombo faster?

Chombo
•Alternatives: CLAWPACK, AMRITA
•Single-phase
•2nd-order spatial discretization

1. CHOMBO: Colella et al., software package for AMR applications, Technical Report(LBNL), 2000
2. CLAWPACK: LeVeque, software, http://www.amath.washington.edu/~claw/, 1997
3. AMRITA: Quirk, An Introduction to Amrita. http://www.amrita-cfd.com, 1997
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Chombo

Present
(+ 1 GPU: 7 min)
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Performance

Compared to a space adaptive, single-threaded solver:
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• Algorithmic improvements: 24X faster

• CPU optimization (vectorization): 1.8X faster

• Task-based parallelism (threading): 12X (over 16)

• GPUs as accelerators: 3X
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• Algorithmic improvements: 24X faster

• CPU optimization (vectorization): 1.8X faster

• Task-based parallelism (threading): 12X (over 16)

• GPUs as accelerators: 3X

Performance

Compared to a space adaptive, single-threaded solver:

‣ Overall speed-up: 3 orders of magnitude (x1500)
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Performance
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Conclusions

• GPUs are offering a performance gain of (no more than) 10X:

✓ 3-7 X (maximum) in terms of GFLOP/s 

✓ 2-7 X (maximum) in terms of GByte/s

x Even if high, performance gains are fragile

• Slow CPU-GPU transfers:

✓ Can be hidden with computation

x Cannot always be addressed by moving everything on the GPU

• GPU execution models impose rigid requirements

x Irregular codes do not directly map well on GPU

✓ Relaxation/regularization dramatically improves performance

✓ Use heterogenous computing instead
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