Finding the perfect file system for life sciences An impossible mission?

Roberto Fabbretti Volker Flegel Vital-IT **Swiss Institute of Bioinformatics**

Lausanne, Switzerland

Life sciences are a new Customer of HPC

- Most end-users have little computer literacy
- Groups are small
- Data is mostly produced from Windows workstations
- Some data require a lot of computing to be analyzed
- Some categories of end users are big consumers

A brief history of Vital-IT storage

- 2003 1.7 TB
 - SAN attached storage
 - NFS server
- 2006
 - Lustre 8TB
- 2007
 - Addition of NFS attached storage for dedicated projects
- 2008
 - Implementation of HSM storage

Next Generation Sequencing redefine Genomics

Ultra High Throughput Sequencing (UHTS) Solexa

Data per run/per week

- 2007 **1 Terabytes** of raw and processed data
- 2008 2.5 Terabytes of raw and processed data
- 2009 7 Terabytes of raw and processed data

Comparison of the growth with the CERN

Vital-IT © 2010 SIB

Requirements

Create a storage infrastructure capable of

- scaling to many PB
- hosting hundreds million of files
- providing the lowest cost or people will put their data on usb disks
- •eliminating the need of backup
- •being accessible from a compute farm
- •providing a credible full disaster recovery scenario

What we try to avoid

Courtesy Chris Dagdigian BioTeam

- Lustre
 - Pro
 - Cheap
 - Performance
 - Cons
 - Difficult to set up
 - Poor metadata performance
 - Reliability
 - Manageability
 - Backup
 - Disaster recovery

- Netapp
 - Pro
 - Easy setup
 - Robust
 - Excellent availability
 - Cons
 - Price
 - Performance
 - Standard Ontap OS limited to 16 TB volumes
 - Ontap GX (cluster NAS) not in mainstream
 - Backup
 - Disaster recovery
 - Low storage density

- Isilon
 - Pro
 - Easy setup
 - Robust
 - Excellent availability
 - Cons
 - Price
 - Performance for small configurations
 - Backup
 - Disaster recovery
 - Low storage density

• Panasas

- Pro
 - Easy manageability
- Cons
 - Price
 - Poor metadata performance leads to complex configuration
 - Backup
 - Disaster recovery
 - Low storage density

• GPFS+TSM

- Pro
 - Robust
 - Excellent availability
 - Community
- Cons
 - Price
 - At the time we considered it TSM could manage only a few million files

Quantum StorNext

Pros

- Fulfills both requirements HPC file system and HSM
- Offers a tight integration between cluster filesystem and storage manager
- Transport independent (Infiniband, 10 Gb ethernet)
- Hardware vendor independent
- Scalable performance
- Easy resizing of volumes

Cons

- Price
- Commercial product
- Lots of moving parts

TCO

SIB

Swiss Institute of Bioinformatics

Quantum StorNext architecture

Quantum StorNext architecture

Quantum StorNext has two components

- Quantum StorNext filesystem
 - Cluster filesystem which can assemble LUNS on a SAN and present them to hosts through a dedicated protocol or NFS/CIFS
 - Directs the I/O to the physical disks through affinities
 - Organizes the migration of data from one physical disk to another while keeping the filesystem view constant
- Quantum StorNext Storage Manager
 - Organizes the copy of data from disk to tape and reciprocally according to defined policies
 - Monitors the fill level of a filesystem
 - If low watermark is reached data are truncated and a pointer is left which is shown to the user as the real file

Storage infrastructure

HSM front end servers
2 metadata controllers
3 SAN clients

Storage infrastructure

HP SFS cluster file system

• 16 TB storage

Tape libraries

• 830 TB storage

HP EVA 8100

- 74 TB VRAID 5 storage Transtec Provigo SUMO 550F
- 74 TB RAID 6 storage

Swiss Institute of Bioinformatics

Host configuration

Two metadata servers

- One active
- One standby

Five gateway servers

- One samba server
- Four NFS servers

CentOS 5

2 network interfaces

- One for the gigabit backbone
- One for the metadata dedicated network

Infiniband interface

Operations

To be successful an HSM has to be used the right way:

All important files must stay on the disk cache.

- All useless files have to be truncated in order to stay below low watermark level
- Truncation policies are set by directory
- Scripting allows to select a certain type of files for truncation

For example

UHTS images are removed from the disk cache after 1 month

Conclusion

- •System is operational
- •System is robust
- Requires trained operators
- •Requires a valid 24/7 support contract
- •Allows to make large retrospective analysis of archived data
- •Allows to associate biological data from different technology platforms

